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ABSTRACT

When a corrugated pipe is swirled it produces a musically interesting sound. By increasing its rotational speed one can
produce a series of frequencies corresponding to the modes of the open-open pipe. An interesting issue, raised since the
early studies on the whistling of corrugated pipes, is that the fundamental acoustic mode is not whistling. This aspect has
been related in the literature to the onset of turbulence in the pipe flow. In the present paper we provide a critical literature
review and a physical model for the sound production, which contradicts the explanation of the missing fundamental
mode presented in the literature.

INTRODUCTION

A short corrugated open-open tube, known as the “Voice of the
Dragon” in Japan [1] and the “Hummer” in the United States [2],
was a widely diffused musical toy since the early 70’s. When
swirled in a circular motion, it produces such amusing tonal-
ities that it has been used as a musical instrument by several
composers [1, 2]. It is referred to by Schickele [3] as the “Lasso
d’Amore”. The singing corrugated pipes are attractive because
of their technical simplicity, high expressive potential, and un-
expected sonic qualities. We consider a flexible corrugated pipe
of L = 90 cm length with an internal diameter D = 2.5 cm. The
pitch of the corrugations is about Pt = 6 mm (Figure 1).

When the corrugated pipe is hold with a hand and swirled in a
circular motion, a pleasant whistling is obtained. As the rotation
is accelerated one can produce a series of tones with frequencies
corresponding to open-open resonant modes of the pipe:

fn = nce f f /(2L)(n = 2,3,4, . . .) (1)

where ce f f is the speed of sound in the tube. The value of ce f f
is lower than the speed of sound in air [4]. The whistling of
a specific mode fn can be obtained by blowing through the
pipe with a velocity U corresponding to a critical Strouhal
number SrPt = fnPt/U . For our flexible pipe SrPt ≈ 0.5. The
specific sound quality of the pipe can be explained as a result
of the interference between the sound radiated from the moving
pipe termination and the sound radiated from the fixed pipe
termination [1].

One wonders why the first mode n = 1 is not whistling. In the
present paper we give a review of our current understanding
of the physics of the instrument and try to answer this ques-
tion. While doing so, we will propose some corrections to the
physical models proposed in the literature.

FLUID DYNAMICS

The whistling of the corrugated pipe is induced by the flow
through the pipe driven by its rotation. This can be demonstrated
by closing the pipe termination which is held with the hand.
Placing the thumb in the tube is a convenient way to do so. This
suppresses the whistling. Another way to demonstrate that it

Figure 1: Geometry of the corrugated pipe.

is the flow through the corrugated pipe that sustains whistling,
is to blow through the pipe. Our lung capacity is not sufficient
to make a typical hummer whistle. However, one can take a
narrower corrugated pipe and make it whistle. A corrugate pipe
with diameter D = 1 cm used as protection jacket for electrical
cables in buildings of L = 1 m length, whistles nicely at a rather
high pitch. A problem here is that our lungs do not behave as
an acoustically open end, so that a quantitative interpretation of
this result is difficult.

The flow velocity U through the swinging pipe can be estimated
by assuming a steady frictionless flow. As the velocities are low
compared to the speed of sound, the pressure difference across
the pipe is very small compared to the atmospheric pressure.
One can therefore neglect the density variation in the steady
component of the flow. The fact that the air is almost incom-
pressible implies that, in a steady flow, the volume flux Q along
the tube must be independent of the position along the tube x,
measured from the fixed open end. If we neglect changes in the
velocity profile, the flow velocity remains constant along the
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pipe. This velocity is given by U = 4Q/
(
πD2). Because of the

swinging motion, the tube is rotating with an angular velocity
Ω. A fluid particle, corresponding to a slice of the tube of length
dx, will undergo a centrifigual force ρ0

(
π dx D2/4

)
Ω2x. As the

fluid velocity is constant this force should be balanced by the
pressure forces − [p(x+dx)− p(x)]πD2/4 = −d p

(
πD2/4

)
.

This yields the differential equation:

d p = ρ0Ω
2xdx (2)

Integration between the non-moving tube inlet x = 0 and the
moving tube outlet x = L yields:

p(L)− p(0) =
1
2

ρ0Ω
2L2 (3)

Note that this equation has the opposite sign from the equation
used by Silverman and Cushman [1] and Serafin and Kojs [2].
This is due to the fact that Silverman and Cushman[1] ignored
the impact of the centrifugal force on their measurement of the
pressure difference and made the erroneous assumption that
the inlet pressure p(0) should be equal to atmospheric pressure
patm. In fact, as a result of flow separation, a free jet is formed
at the swinging outlet of the pipe. Like in the plume flowing
out of a chimney, the pressure p(L) in this free jet is equal to
the surrounding atmospheric pressure patm. The low pressure
at the inlet:

p(0) = patm−
1
2

ρ0Ω
2L2 (4)

is actually sucking the surrounding air into the pipe. Assuming
a steady incompressible frictionless flow around the inlet one
finds, from the conservation of mechanical energy (Bernoulli):

patm = p(0)+
1
2

ρ0U2 (5)

which combined with Eq. 4 yields the very simple result:

U = ΩL (6)

In this simple model we assume that the friction is negligible
(except for flow separation at the outlet) and that the velocity
in the pipe is uniform. As a result of friction the velocity in the
pipe will be lower near the walls than in the middle, so that a
velocity profile will develop.

At high flow rates the velocity field inside the pipe can display
a complex unsteady chaotic motion called turbulence. The tran-
sition from a laminar (smooth) velocity field toward a turbulent
(chaotic) flow is determined by the ratio of inertial to viscous
forces. A measure for this is the Reynold number ReD =UD/ν ,
where ν is the kinematic viscosity (for air at room conditions
ν = 1.5× 10−5 m2/s). For a smooth pipe below ReD = 2300
turbulence cannot be maintained. Depending on the inflow con-
ditions a laminar flow can however be maintained in a smooth
pipe up to very high values of ReD [5]. In the case of rough
walls (such as for a corrugated pipe) turbulence is commonly
observed for ReD ≥ 4000 [5]. Transition can occur already for
ReD ≥ 2300.

As we will explain later, the whistling frequency is related to
the flow velocity by a critical Strouhal number (dimensionless
frequency) SrPt = f Pt/U of the order of 0.5. The lowest mode
of the pipe, whistling at the frequency f ≈ 170 Hz corresponds
to a flow velocity U ≈ 2 m/s and ReD ≈ 3× 103. Hence, the
flow is typically transitional. For the next mode ReD ≈ 5×103

and the flow is certainly turbulent. It is assumed in the literature
that turbulence triggers the whistling [6, 7]. The absence of the
first mode would be explained by the absence of turbulence.

Experiments carried out by Elliot [4] on a pipe with D =
1.07 cm, Pt = 2 mm and L = 1 m show that the first mode to be

excited is the ninth mode (n = 9) with f = 1.5 kHz. This corre-
sponds to a flow velocity U = 8.6 m/s, so that ReD ≈ 6.3×103.
Mode n = 8 has a Reynolds ReD ≈ 5.6× 103 and does not
sound. Elliot [4] carried out experiments with both a sharp inlet
(promoting turbulence) and a smooth inlet nozzle (retarding
turbulence). He did not observe any difference between the two
measurements series. In both cases the first whistling mode was
the ninth mode. This experiment indicates that the absence of
turbulence is not likely to be the essential factor determining
whether a mode does not whistle.

SOUND SOURCES

Whistling occurs at each acoustic mode fn around a specific
value of the Strouhal number SrPt = fnPt/U . The exact value
of SrPt appears to depend on the geometry of the corrugations.
Experiments show that [8]:

SrPt = 0.58
Pt

W + rup

(
W + rup

D

)0.2
(7)

where W is the cavity width as defined in Figure 1 and rup
is the radius of curvature of the upstream edge of the cavity.
In particular, it is observed that the critical flow velocity for
a specific acoustic mode does not change when one increases
the pitch Pt while keeping W + rup constant. This demonstrates
that the whistling is due to a local hydrodynamic phenomenon
at each cavity. Note that the factor

[(
W + rup

)
/D

]0.2 appears
to be related to the shape of the velocity profile and it is valid
only for turbulent flows.

It is well known from literature that the grazing flow over a
cavity is unstable [9, 10]. In the case of the corrugated pipe this
instability is triggered by the velocity perturbation associated
with the acoustic standing wave along the pipe. For a given
acoustic standing wave p′n:

p′n (x, t) = Ansin
(

π x n
L

)
cos(2π fnt) (8)

where An is the mode amplitude, the acoustic velocity u′n can be
calculated from the equation of motion ρ0 (∂u′∂ t)=−(∂ p′/∂x):

u′n (x, t) =−
An

ρ0ce f f
cos

(
π x n

L

)
sin(2π fnt) (9)

This velocity is the average of the oscillating acoustic velocity
across the section of the pipe at position x.

The coupling of the flow instability with the acoustic flow re-
sults into periodic vortex shedding. This unsteadiness of the
hydrodynamic flow results into an unsteady periodic force of
the flow on the walls of the pipe. This unsteady periodic force
is associated with a reaction force from the walls on the flow. It
can be shown that such an unsteady force is a source of sound
[11, 12]. It is essential to realize that this sound production does
not involve wall vibrations. This can be verified by varying the
wall stiffness.

As we found that the hydrodynamic instability is a local phe-
nomenon at each cavity, one can try to describe the phenomenon
by carrying out a numerical simulation of the flow within a
single cavity. Since Pt is much smaller than the acoustic wave-
length ce f f / fn of the produced sound wave, one can assume
that wave propagation is locally negligible. This corresponds
to the assumption that the flow is locally incompressible. We
follow here a procedure inspired by the work of Martínez-Lera
et al. [13].

While three-dimensional turbulent flow simulations are still
extremely difficult, incompressible two-dimensional (axisym-
metrical) simulations are feasible. Such flow simulations are
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laminar, but one can assume a velocity profile~u = (u(r) ,0,0)
just upstream of the cavity that corresponds to a time-average
turbulent velocity profile. From these simulations we predict
the oscillating pressure difference ∆p′ induced along the pipe
by the cavity oscillation driven by an imposed acoustic oscil-
lation u′, which is uniform across the section of the pipe just
upstream of the cavity. As the viscous effects are not accurately
described, we correct the simulations by subtracting the pres-
sure difference ∆p′visc obtained from simulations of the flow
in a uniform pipe segment without cavity [14]. The acoustic
energy produced by the source is given in first approximation
by:

Psource = S u′
(
∆p′−∆p′visc

)
(10)

A first consequence of this theory is that sound in a corrugated
pipe is generated mainly around pressure nodes of the acous-
tic standing wave, where the acoustic velocity has the largest
amplitude. Experiments do indeed confirm this. When cavities
around pressure nodes are plugged the corrugated pipe stops
whistling [15, 16, 18], while it is much less sensitive to plugging
of cavities around velocity nodes.

Figure 2: Dimensionless source power as function of the
Strouhal number for a cavity with rounded edges and |u′|/U =
0.05

.

If we want to predict whistling we should consider an energy
balance [19] for a specific mode between the time-average of
the energy production 〈Psource〉 and the losses 〈Ploss〉. A typical
result of the calculation of 〈Psource〉 is shown in Figure 2 as
function of SrPt

(
W + rup

)
/Pt for |u′|/U = 0.05. We observe

that for some values of SrPt the produced power is positive,
which is a necessary condition for whistling. This occurs for
SrPt

(
W + rup

)
/Pt < 0.1, for 0.5 < SrPt

(
W + rup

)
/Pt < 0.8

and for 1.1 < SrPt
(
W + rup

)
/Pt < 1.3. Each range for which

〈Psource〉 is positive is called an hydrodynamic mode.

A first success of our theory is that it does predict an optimal
sound production for the second hydrodynamic mode around
SrPt

(
W + rup

)
/Pt = 0.6, which is the mode observed in the

experiments [15, 18]. The theory actually predicts SrPt within
10% [14]. A further conclusion from this theory is that turbu-
lence is not essential to promote whistling. Actually a velocity
profile with thin laminar boundary layers will correspond to a
larger source power than a flow with a fully developed turbulent
velocity profile [8].

BALANCING SOURCES AND LOSSES

We now focus on the maximum 〈Psource〉max of 〈Psource〉 pre-
dicted, around SrPt

(
W + rup

)
/Pt = 0.6. In Figure 3 we show

a dimensionless representation of 〈Psource〉max as a function of
the amplitude |u′|/U . We observe that:

D
W + rup

〈Psource〉max

ρ0US |u′|2
(11)

is almost constant for |u′|/U < 10−2, which corresponds to a
linear behavior (∆p′ ∝ u′). For larger amplitudes |u′|/U > 10−2

the dimensionless source decreases rapidly. This non-linear
saturation behavior allows us to predict a finite amplitude as
a result of an equilibrium between linear losses, scaling as
〈Ploss〉 ∝ |u′|2, and the non-linear sound production 〈Psource〉.

Figure 3: Maximum dimensionless source power as function of
the dimensionless amplitude of the acoustic velocity. Results
of the numerical simulations carried out with different flow
profiles upstream of the cavity.

We now reconsider our initial question: why does the funda-
mental mode of the corrugated pipe not whistle?

At low frequencies it appears that visco-thermal losses are
dominant, as in most wind instruments [20]. Radiation losses
at the pipe terminations can be neglected for the lowest modes,
when we consider the prediction of the oscillation amplitude in
the pipe. The visco-thermal losses of a traveling acoustic wave
are described by a damping coefficient α defined by:

α =
1
p′

d p′

dx
(12)

The dimensionless losses in a standing wave are given by:

D
W
〈Plosses〉

ρ0US |u′|2
=

1
2

αPt
M

c0

ce f f

D
W

(13)

Assuming thin acoustic visco-thermal boundary layers, one
expects that α ∝

√
fn [21], while U ∝ fn (because SrPt =

constant). Hence, the dimensionless losses are expected to de-
crease with increasing mode number. From Figure 3 we see
that if mode n = 2 just whistles, the increase of dimensionless
losses with respect to the dimensionless production by a factor√

2 between mode n = 2 and mode n = 1 easily explains the
impossibility to make the tube sound at the fundamental mode
n = 1.

There is a small additional reason why a corrugated pipe has
troubles when whistling at the fundamental mode. The regions
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of sound production correspond to the pressure nodes of the
standing wave. These nodes are actually outside the pipe as a
result of the inertia of the oscillating flow around the open pipe
termination. This corresponds to the so called end-corrections
which should be added to the pipe length to predict the mode
frequency [20]. We are missing a length 0.6D of corrugations
as a result of these end-corrections. Also, a hummer has often
a smooth pipe segment (few centimeters) at its inlet, used to
hold the pipe. This definitively tend to kill the whistling on the
fundamental mode.

It is difficult to provide a definitive answer to the problem
because the predicted sound source depends strongly on the
imposed main flow velocity profile. Also, we do not have yet
an accurate prediction for the damping coefficient α .

CONCLUSIONS

The absence of whistling of the “Voice of the Dragon” and the
“Hummer” on their fundamental mode has been attributed in
the literature to the absence of turbulence in the pipe at low
rotation speeds. While the Reynolds numbers corresponding
to the whistling of the first mode are in the transitional range
2300 ≤ ReD ≤ 4000 for the onset of turbulence, there is no
indication that turbulence is essential. Actually, theory predicts
that a flow with thin laminar boundary layers will whistle more
efficiently than a turbulent flow.

Assuming that acoustic losses are dominated by visco-thermal
losses we conclude that for lower modes there is a relative
decrease of losses with respect to the production by a factor

√
2,

when moving from the first mode n = 1 to the second mode n =
2. If the second mode just whistles, the first mode will certainly
not whistle, because of this strong relative increase in losses.
The chance that the first mode will whistle is further reduced
by a reduction of the source region at the pipe terminations due
to end-corrections and smooth pipe segments. It is not until we
have a more quantitative description for the acoustic losses that
a definitive answer to the problem can be given.
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